Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Mol Biol (Mosk) ; 57(6): 1098-1129, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062964

RESUMO

Intracellular calcium signaling is involved in regulating the key functional mechanisms of the nervous system. The control of neuronal excitability and plasticity by calcium ions underlies the mechanisms of higher nervous activity, and the mechanisms of this control are of particular interest to researchers. A family of highly specialized neuronal proteins described in recent decades can translate the information contained in calcium signals into the regulation of channels, enzymes, receptors, and transcription factors. Neuronal calcium sensor-1 (NCS-1) is the most common member of the family, which is intensely expressed in central nervous system (CNS) cells; and controls several vital processes, such as neuronal growth and survival, reception, neurotransmission, and synaptic plasticity. In addition to calcium ions, NCS-1 can bind the so-called mobile, or signaling intracellular zinc, an increased concentration of which is a characteristic feature of cells in oxidative stress. Zinc coordination under these conditions stimulates NCS-1 oxidation to form a disulfide dimer (dNCS-1) with altered functional properties. A combined effect of mobile zinc and an increased redox potential of the medium can thus induce aberrant NCS-1 activity, including signals that promote survival of neuronal cells or induce their apoptosis and, consequently, the development of neurodegenerative processes. The review details the localization, expression regulation, structure, and molecular properties of NCS-1 and considers the current data on its signaling activity in health and disease, including zinc-dependent redox regulation cascades.


Assuntos
Sinalização do Cálcio , Proteínas Sensoras de Cálcio Neuronal , Oxirredução , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Íons/metabolismo , Íons/farmacologia , Neurônios/metabolismo , Zinco/farmacologia , Proteínas Sensoras de Cálcio Neuronal/metabolismo
2.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119491, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37230154

RESUMO

Vertebrate photoreceptor cells are exquisite light detectors operating under very dim and bright illumination mediated by phototransduction, which is under control of the two secondary messengers cGMP and Ca2+. Feedback mechanisms enable photoreceptor cells to regain their responsiveness after light stimulation and involve neuronal Ca2+-sensor proteins, named GCAPs (guanylate cyclase-activating proteins) and recoverins. This review compares the diversity in Ca2+-related signaling mediated by GCAP and recoverin variants that exhibit differences in Ca2+-sensing, protein conformational changes, myristoyl switch mechanisms, diversity in divalent cation binding and dimer formation. In summary, both subclasses of neuronal Ca2+-sensor proteins contribute to a complex signaling network in rod and cone cells, which is perfectly suited to match the requirements for sensitive cell responses and maintaining this responsiveness in the presence of different background light intensities.


Assuntos
Cálcio , Proteínas Sensoras de Cálcio Neuronal , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Cálcio/metabolismo , Retina/metabolismo , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas Ativadoras de Guanilato Ciclase/genética , Proteínas Ativadoras de Guanilato Ciclase/química , Recoverina/genética , Recoverina/metabolismo
3.
Phys Chem Chem Phys ; 25(13): 9500-9512, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36938969

RESUMO

Lanthanides have been frequently used as biomimetic compounds for NMR and fluorescence studies of Ca2+ binding proteins due to having similar physical properties and coordination geometry to Ca2+ ions. Here we report that a member of the neuronal calcium sensor family, neuronal calcium sensor 1, complexes with two lanthanide ions Tb3+ and Eu3+. The affinity for Tb3+ is nearly 50 times higher than that for Ca2+ (Kd,Tb3+ = 0.002 ± 0.0001 µM and Kd, Ca2+ = 91 nM) whereas Eu3+ binding is notably weaker, Kd,Eu3+ = 26 ± 1 µM. Interestingly, despite having identical charge and similar ionic radii, Tb3+ and Eu3+ ions exhibit a distinct binding stoichiometry for NCS1 with one Eu3+ and two Tb3+ ions bound per NCS1 monomer, as demonstrated in fluorescence titration and mass spectrometry studies. These results suggest that the lanthanides' affinity for the individual EF hands is fine-tuned by a small variation in the ion charge density as well as EF hand binding loop amino acid sequence. As observed previously for other lanthanide:protein complexes, the emission intensity of Ln3+ is enhanced upon complexation with the protein, likely due to the displacement of water molecules by oxygen atoms from the coordinating amino acid residues. The overall shape of the Tb3+NCS1 and Eu3+NCS1 monomer shows high levels of similarity compared to the Ca2+ bound protein based on their collision cross section. However, the distinct occupation of EF hands impacts NCS1 oligomerization and affinity for the D2R peptide that mimics the NCS1 binding site on the D2R receptor. Specifically, the Tb3+NCS1 complex populates the dimer and has comparable affinity for the D2R peptide, whereas Eu3+ bound NCS1 remains in the monomeric form with a negligible affinity for the D2R peptide.


Assuntos
Elementos da Série dos Lantanídeos , Sequência de Aminoácidos , Sítios de Ligação , Íons , Elementos da Série dos Lantanídeos/química , Peptídeos/química , Proteínas Sensoras de Cálcio Neuronal
4.
Int J Mol Sci ; 23(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36555318

RESUMO

A defection of blood circulation in the brain leads to ischemia, damage, and the death of nerve cells. It is known that individual populations of GABAergic neurons are the least resistant to the damaging factors of ischemia and therefore they die first of all, which leads to impaired inhibition in neuronal networks. To date, the neuroprotective properties of a number of calcium-binding proteins (calbindin, calretinin, and parvalbumin), which are markers of GABAergic neurons, are known. Neuronal calcium sensor-1 (NCS-1) is a signaling protein that is expressed in all types of neurons and is involved in the regulation of neurotransmission. The role of NCS-1 in the protection of neurons and especially their individual populations from ischemia and hyperexcitation has not been practically studied. In this work, using the methods of fluorescence microscopy, vitality tests, immunocytochemistry, and PCR analysis, the molecular mechanisms of the protective action of NCS-1 in ischemia/reoxygenation and hyperammonemia were established. Since NCS-1 is most expressed in GABAergic neurons, the knockdown of this protein with siRNA led to the most pronounced consequences in GABAergic neurons. The knockdown of NCS-1 (NCS-1-KD) suppressed the basic expression of protective proteins without significantly reducing cell viability. However, ischemia-like conditions (oxygen-glucose deprivation, OGD) and subsequent 24-h reoxygenation led to a more massive activation of apoptosis and necrosis in neurons with NCS-1-KD, compared to control cells. The mass death of NCS-1-KD cells during OGD and hyperammonemia has been associated with the induction of a more pronounced network hyperexcitation symptom, especially in the population of GABAergic neurons, leading to a global increase in cytosolic calcium ([Ca2+]i). The symptom of hyperexcitation of neurons with NCS-1-KD correlated with a decrease in the level of expression of the calcium-binding protein-parvalbumin. This was accompanied by an increase in the expression of excitatory ionotropic glutamate receptors, N-methyl-D-aspartate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (NMDAR and AMPAR) against the background of suppression of the expression of glutamate decarboxylase (synthesis of γ-aminobutyric acid).


Assuntos
Cálcio , Neurônios GABAérgicos , Proteínas Sensoras de Cálcio Neuronal , Cálcio/metabolismo , Células Cultivadas , Neurônios GABAérgicos/metabolismo , Glucose , Hiperamonemia , Isquemia , Parvalbuminas , Animais , Proteínas Sensoras de Cálcio Neuronal/metabolismo
5.
Biomolecules ; 12(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35883512

RESUMO

Neuronal calcium sensors (NCSs) are the family of EF-hand proteins mediating Ca2+-dependent signaling pathways in healthy neurons and neurodegenerative diseases. It was hypothesized that the calcium sensor activity of NCSs can be complemented by sensing fluctuation of intracellular zinc, which could further diversify their function. Here, using a set of biophysical techniques, we analyzed the Zn2+-binding properties of five proteins belonging to three different subgroups of the NCS family, namely, VILIP1 and neurocalcin-δ/NCLD (subgroup B), recoverin (subgroup C), as well as GCAP1 and GCAP2 (subgroup D). We demonstrate that each of these proteins is capable of coordinating Zn2+ with a different affinity, stoichiometry, and structural outcome. In the absence of calcium, recoverin and VILIP1 bind two zinc ions with submicromolar affinity, and the binding induces pronounced conformational changes and regulates the dimeric state of these proteins without significant destabilization of their structure. In the presence of calcium, recoverin binds zinc with slightly decreased affinity and moderate conformational outcome, whereas VILIP1 becomes insensitive to Zn2+. NCALD binds Zn2+ with micromolar affinity, but the binding induces dramatic destabilization and aggregation of the protein. In contrast, both GCAPs demonstrate low-affinity binding of zinc independent of calcium, remaining relatively stable even at submillimolar Zn2+ concentrations. Based on these data, and the results of structural bioinformatics analysis, NCSs can be divided into three categories: (1) physiological Ca2+/Zn2+ sensor proteins capable of binding exchangeable (signaling) zinc (recoverin and VILIP1), (2) pathological Ca2+/Zn2+ sensors responding only to aberrantly high free zinc concentrations by denaturation and aggregation (NCALD), and (3) Zn2+-resistant, Ca2+ sensor proteins (GCAP1, GCAP2). We suggest that NCS proteins may therefore govern the interconnection between Ca2+-dependent and Zn2+-dependent signaling pathways in healthy neurons and zinc cytotoxicity-related neurodegenerative diseases, such as Alzheimer's disease and glaucoma.


Assuntos
Cálcio , Proteínas Sensoras de Cálcio Neuronal , Cálcio/metabolismo , Motivos EF Hand , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Ligação Proteica/fisiologia , Recoverina/química , Recoverina/metabolismo , Zinco/metabolismo
6.
Metallomics ; 14(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35657675

RESUMO

Abiogenic metals Pb and Hg are highly toxic since chronic and/or acute exposure often leads to severe neuropathologies. Mn2+ is an essential metal ion but in excess can impair neuronal function. In this study, we address in vitro the interactions between neuronal calcium sensor 1 (NCS1) and divalent cations. Results showed that non-physiological ions (Pb2+ and Mn2+) bind to EF-hands in NCS1 with nanomolar affinity and lower equilibrium dissociation constant than the physiological Ca2+ ion. (Kd, Pb2+ = 7.0 ± 1.0 nM; Kd, Mn2+ = 34.0 ± 6.0 nM; K). Native ultra-high resolution mass spectrometry (FT-ICR MS) and trapped ion mobility spectrometry-mass spectrometry (nESI-TIMS-MS) studies provided the NCS1-metal complex compositions-up to four Ca2+ or Mn2+ ions and three Pb2+ ions (M⋅Pb1-3Ca1-3, M⋅Mn1-4Ca1-2, and M⋅Ca1-4) were observed in complex-and similarity across the mobility profiles suggests that the overall native structure is preserved regardless of the number and type of cations. However, the non-physiological metal ions (Pb2+, Mn2+, and Hg2+) binding to NCS1 leads to more efficient quenching of Trp emission and a decrease in W30 and W103 solvent exposure compared to the apo and Ca2+ bound form, although the secondary structural rearrangement and exposure of hydrophobic sites are analogous to those for Ca2+ bound protein. Only Pb2+ and Hg2+ binding to EF-hands leads to the NCS1 dimerization whereas Mn2+ bound NCS1 remains in the monomeric form, suggesting that other factors in addition to metal ion coordination, are required for protein dimerization.


Assuntos
Cálcio , Chumbo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Manganês/metabolismo , Proteínas Sensoras de Cálcio Neuronal , Neuropeptídeos
8.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34830487

RESUMO

Neuronal calcium sensor-1 (NCS-1) is a four-EF-hand ubiquitous signaling protein modulating neuronal function and survival, which participates in neurodegeneration and carcinogenesis. NCS-1 recognizes specific sites on cellular membranes and regulates numerous targets, including G-protein coupled receptors and their kinases (GRKs). Here, with the use of cellular models and various biophysical and computational techniques, we demonstrate that NCS-1 is a redox-sensitive protein, which responds to oxidizing conditions by the formation of disulfide dimer (dNCS-1), involving its single, highly conservative cysteine C38. The dimer content is unaffected by the elevation of intracellular calcium levels but increases to 10-30% at high free zinc concentrations (characteristic of oxidative stress), which is accompanied by accumulation of the protein in punctual clusters in the perinuclear area. The formation of dNCS-1 represents a specific Zn2+-promoted process, requiring proper folding of the protein and occurring at redox potential values approaching apoptotic levels. The dimer binds Ca2+ only in one EF-hand per monomer, thereby representing a unique state, with decreased α-helicity and thermal stability, increased surface hydrophobicity, and markedly improved inhibitory activity against GRK1 due to 20-fold higher affinity towards the enzyme. Furthermore, dNCS-1 can coordinate zinc and, according to molecular modeling, has an asymmetrical structure and increased conformational flexibility of the subunits, which may underlie their enhanced target-binding properties. In HEK293 cells, dNCS-1 can be reduced by the thioredoxin system, otherwise accumulating as protein aggregates, which are degraded by the proteasome. Interestingly, NCS-1 silencing diminishes the susceptibility of Y79 cancer cells to oxidative stress-induced apoptosis, suggesting that NCS-1 may mediate redox-regulated pathways governing cell death/survival in response to oxidative conditions.


Assuntos
Sinalização do Cálcio/genética , Receptor Quinase 1 Acoplada a Proteína G/genética , Neoplasias/genética , Proteínas Sensoras de Cálcio Neuronal/genética , Neurônios/metabolismo , Neuropeptídeos/genética , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Dimerização , Dissulfetos/química , Motivos EF Hand/genética , Células HEK293 , Humanos , Cinética , Neoplasias/patologia , Proteínas Sensoras de Cálcio Neuronal/antagonistas & inibidores , Neurônios/química , Neuropeptídeos/antagonistas & inibidores , Oxirredução , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/genética , Zinco/metabolismo
9.
FASEB J ; 35(10): e21873, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34499766

RESUMO

Calcium (Ca2+ ) signaling is critical for neuronal functioning and requires the concerted interplay of numerous Ca2+ -binding proteins, including neuronal calcium sensor 1 (NCS1). Although an important role of NCS1 in neuronal processes and in neurodevelopmental and neurodegenerative diseases has been established, the underlying mechanisms remain enigmatic. Here, we systematically investigated the functions of NCS1 in the brain. Using Golgi-Cox staining, we observed a reduction in dendritic complexity and spine density in the prefrontal cortex and the dorsal hippocampus of Ncs1-/- mice, which may underlie concomitantly observed deficits in memory acquisition. Subsequent RNA sequencing of Ncs1-/- and Ncs1+/+ mouse brain tissues revealed that NCS1 modulates gene expression related to neuronal morphology and development. Investigation of developmental databases further supported a molecular role of NCS1 during brain development by identifying temporal gene expression patterns. Collectively, this study provides insights into NCS1-dependent signaling and lays the foundation for a better understanding of NCS1-associated diseases.


Assuntos
Cálcio/metabolismo , Hipocampo/patologia , Doenças do Sistema Nervoso/patologia , Proteínas Sensoras de Cálcio Neuronal/fisiologia , Neurônios/patologia , Neuropeptídeos/fisiologia , Animais , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Neurônios/metabolismo , RNA-Seq , Transdução de Sinais , Transcriptoma
10.
Neurosci Lett ; 761: 136123, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34293418

RESUMO

BACKGROUND: Epilepsy is a disorder characterized by recurrent seizures that affects 1% of the population. However, the neurochemical alterations observed in epilepsy are not fully understood. There are different animal models of epilepsy, such as genetic or drug induced. In the present study, we utilize Wistar Audiogenic Rats (WAR), a murine strain that develops seizures in response to high intensity audio stimulation, in order to investigate abnormalities in glutamatergic and GABAergic systems. METHODS: Synaptosomes and glial plasmalemmal vesicles were prepared from hippocampus and cortex, respectively. Glutamate and GABA release and uptake were assayed by monitoring the fluorescence and using L-[3H]-radiolabeled compounds. Glutamate and calcium concentration in the synaptosomes were also measured. The expression of neuronal calcium sensor 1 (NCS-1) was determined by western blot. RESULTS: Glutamate and GABA release evoked by KCl was decreased in WAR compared to control Wistar rats. Calcium independent release was not considerably different in both groups. The total amount of glutamate of synaptosomes, as well as glutamate uptake by synaptosomes and GPV were also decreased in WAR in comparison with the controls. In addition, [Ca2+]i of hippocampal synaptosomes, as well as NCS-1 expression in the hippocampus, were increased in WAR in comparison with controls. CONCLUSION: In conclusion, our results suggest that WAR have important alterations in the glutamatergic and GABAergic pathways, as well as an increased expression of NCS-1 in the hippocampus and inferior colliculus. These alterations may be linked to the spreading of hyperexcitability and recruitment of various brain regions.


Assuntos
Hipocampo/metabolismo , Convulsões/metabolismo , Animais , Cálcio/metabolismo , Ácido Glutâmico/metabolismo , Masculino , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Ratos , Ratos Wistar , Sinaptossomos/metabolismo , Ácido gama-Aminobutírico/metabolismo
11.
Mol Pharmacol ; 100(3): 258-270, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34321341

RESUMO

Neuronal calcium sensor 1 (NCS1), a calcium-binding protein, and transient receptor potential V4 (TRPV4), a plasma membrane calcium channel, are fundamental in the regulation of calcium homeostasis. The interactions of these proteins and their regulation by paclitaxel (PTX) were investigated using biochemical, pharmacological, and electrophysiological approaches in both a breast cancer epithelial cell model and a neuronal model. TRPV4 and NCS1 reciprocally immunoprecipitated each other, suggesting that they make up a signaling complex. The functional consequence of this physical association was that TRPV4 currents increased with increased NCS1 expression. Calcium fluxes through TRPV4 correlated with the magnitude of TRPV4 currents, and these calcium fluxes depended on NCS1 expression levels. Exposure to PTX amplified the acute effects of TRPV4 expression, currents, and calcium fluxes but decreased the expression of NCS1. These findings augment the understanding of the properties of TRPV4, the role of NCS1 in the regulation of TRPV4, and the cellular mechanisms of PTX-induced neuropathy. SIGNIFICANCE STATEMENT: TRPV4 and NCS1 physically and functionally interact. Increased expression of NCS1 enhances TRPV4-dependent currents, which are further amplified by treatment with the chemotherapeutic drug paclitaxel, an effect associated with adverse effects of chemotherapy, including neuropathy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Paclitaxel/farmacologia , Canais de Cátion TRPV/metabolismo , Antineoplásicos Fitogênicos/efeitos adversos , Cálcio/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Eletrofisiológicos , Humanos , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/genética , Paclitaxel/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Canais de Cátion TRPV/genética
13.
Sci Rep ; 11(1): 2372, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504822

RESUMO

Neuronal calcium sensor 1 (NCS1) regulates a wide range of cellular functions throughout the mammalian nervous systems. Altered NCS1 expression is associated with neurodevelopmental and neurodegenerative diseases. Previous studies focused on affective and cognitive behaviors in NCS1 knockout (KO) mice, but little is known about the physiological and pathological states associated with the loss of NCS1 in the peripheral nervous system. We previously reported that NCS1 expression was reduced following paclitaxel-induced peripheral neuropathy. Here, we comprehensively investigated the phenotypes of NCS1-KO mice through a battery of behavioral tests examining both central and peripheral nervous systems. Generally, only mild differences were observed in thermal sensation and memory acquisition between NCS1-WT and -KO male mice, but not in female mice. No differences were observed in motor performance, affective behaviors, and hearing in both sexes. These results suggest that NCS1 plays a modulatory role in sensory perceptions and cognition, particularly in male mice. NCS1 has been proposed as a pharmacological target for various diseases. Therefore, the sex-specific effects of NCS1 loss may be of clinical interest. As we examined a constitutive KO model, future studies focusing on various conditional KO models will further elucidate the precise physiological significance of NCS1.


Assuntos
Proteínas Sensoras de Cálcio Neuronal/deficiência , Neuropeptídeos/deficiência , Fenótipo , Desempenho Psicomotor , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Knockout , Atividade Motora , Estimulação Física , Sensação , Temperatura
14.
Cell Mol Life Sci ; 78(5): 2263-2278, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32936312

RESUMO

Understanding the interplay between sequence, structure and function of proteins has been complicated in recent years by the discovery of intrinsically disordered proteins (IDPs), which perform biological functions in the absence of a well-defined three-dimensional fold. Disordered protein sequences account for roughly 30% of the human proteome and in many proteins, disordered and ordered domains coexist. However, few studies have assessed how either feature affects the properties of the other. In this study, we examine the role of a disordered tail in the overall properties of the two-domain, calcium-sensing protein neuronal calcium sensor 1 (NCS-1). We show that loss of just six of the 190 residues at the flexible C-terminus is sufficient to severely affect stability, dynamics, and folding behavior of both ordered domains. We identify specific hydrophobic contacts mediated by the disordered tail that may be responsible for stabilizing the distal N-terminal domain. Moreover, sequence analyses indicate the presence of an LSL-motif in the tail that acts as a mimic of native ligands critical to the observed order-disorder communication. Removing the disordered tail leads to a shorter life-time of the ligand-bound complex likely originating from the observed destabilization. This close relationship between order and disorder may have important implications for how investigations into mixed systems are designed and opens up a novel avenue of drug targeting exploiting this type of behavior.


Assuntos
Proteínas de Transporte/química , Proteínas Intrinsicamente Desordenadas/química , Proteínas Sensoras de Cálcio Neuronal/química , Neuropeptídeos/química , Domínios Proteicos , Sequência de Aminoácidos , Sítios de Ligação/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Cinética , Ligantes , Modelos Moleculares , Mutação , Proteínas Sensoras de Cálcio Neuronal/genética , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Estabilidade Proteica , Termodinâmica
15.
mSphere ; 5(5)2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907953

RESUMO

Intracellular calcium (Ca2+) is crucial for signal transduction in Cryptococcus neoformans, the major cause of fatal fungal meningitis. The calcineurin pathway is the only Ca2+-requiring signaling cascade implicated in cryptococcal stress adaptation and virulence, with Ca2+ binding mediated by the EF-hand domains of the Ca2+ sensor protein calmodulin. In this study, we identified the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) as a member of the EF-hand superfamily. We demonstrated that Ncs1 has a role in Ca2+ homeostasis under stress and nonstress conditions, as the ncs1Δ mutant is sensitive to a high Ca2+ concentration and has an elevated basal Ca2+ level. Furthermore, NCS1 expression is induced by Ca2+, with the Ncs1 protein adopting a punctate subcellular distribution. We also demonstrate that, in contrast to the case with Saccharomyces cerevisiae, NCS1 expression in C. neoformans is regulated by the calcineurin pathway via the transcription factor Crz1, as NCS1 expression is reduced by FK506 treatment and CRZ1 deletion. Moreover, the ncs1Δ mutant shares a high temperature and high Ca2+ sensitivity phenotype with the calcineurin and calmodulin mutants (cna1Δ and cam1Δ), and the NCS1 promoter contains two calcineurin/Crz1-dependent response elements (CDRE1). Ncs1 deficiency coincided with reduced growth, characterized by delayed bud emergence and aberrant cell division, and hypovirulence in a mouse infection model. In summary, our data show that Ncs1 has a significant role as a Ca2+ sensor in C. neoformans, working with calcineurin to regulate Ca2+ homeostasis and, consequently, promote fungal growth and virulence.IMPORTANCECryptococcus neoformans is the major cause of fungal meningitis in HIV-infected patients. Several studies have highlighted the important contributions of Ca2+ signaling and homeostasis to the virulence of C. neoformans Here, we identify the cryptococcal ortholog of neuronal calcium sensor 1 (Ncs1) and demonstrate its role in Ca2+ homeostasis, bud emergence, cell cycle progression, and virulence. We also show that Ncs1 function is regulated by the calcineurin/Crz1 signaling cascade. Our work provides evidence of a link between Ca2+ homeostasis and cell cycle progression in C. neoformans.


Assuntos
Calcineurina/genética , Proteínas de Ligação ao Cálcio/genética , Divisão Celular/genética , Cryptococcus neoformans/genética , Cryptococcus neoformans/patogenicidade , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/genética , Animais , Cryptococcus neoformans/química , Feminino , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Virulência/genética
16.
Biomolecules ; 10(7)2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664359

RESUMO

N-terminal myristoylation is a common co-and post-translational modification of numerous eukaryotic and viral proteins, which affects their interaction with lipids and partner proteins, thereby modulating various cellular processes. Among those are neuronal calcium sensor (NCS) proteins, mediating transduction of calcium signals in a wide range of regulatory cascades, including reception, neurotransmission, neuronal growth and survival. The details of NCSs functioning are of special interest due to their involvement in the progression of ophthalmological and neurodegenerative diseases and their role in cancer. The well-established procedures for preparation of native-like myristoylated forms of recombinant NCSs via their bacterial co-expression with N-myristoyl transferase from Saccharomyces cerevisiae often yield a mixture of the myristoylated and non-myristoylated forms. Here, we report a novel approach to preparation of several NCSs, including recoverin, GCAP1, GCAP2, neurocalcin δ and NCS-1, ensuring their nearly complete N-myristoylation. The optimized bacterial expression and myristoylation of the NCSs is followed by a set of procedures for separation of their myristoylated and non-myristoylated forms using a combination of hydrophobic interaction chromatography steps. We demonstrate that the refolded and further purified myristoylated NCS-1 maintains its Са2+-binding ability and stability of tertiary structure. The developed approach is generally suited for preparation of other myristoylated proteins.


Assuntos
Aciltransferases/metabolismo , Bactérias/crescimento & desenvolvimento , Ácido Mirístico/química , Proteínas Sensoras de Cálcio Neuronal/química , Proteínas Sensoras de Cálcio Neuronal/genética , Animais , Bactérias/genética , Cromatografia , Proteínas Fúngicas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Dobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia
18.
Mol Oncol ; 14(6): 1134-1151, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32239615

RESUMO

Changes in intracellular calcium (Ca2+ ) signaling can modulate cellular machinery required for cancer progression. Neuronal calcium sensor 1 (NCS1) is a ubiquitously expressed Ca2+ -binding protein that promotes tumor aggressiveness by enhancing cell survival and metastasis. However, the underlying mechanism by which NCS1 contributes to increased tumor aggressiveness has yet to be identified. In this study, we aimed to determine (a) whether NCS1 expression changes in response to external stimuli, (b) the importance of NCS1 for cell survival and migration, and (c) the cellular mechanism(s) through which NSC1 modulates these outcomes. We found that NCS1 abundance increases under conditions of stress, most prominently after stimulation with the pro-inflammatory cytokine tumor necrosis factor α, in a manner dependent on nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB). We found that NFκB signaling is activated in human breast cancer tissue, which was accompanied by an increase in NCS1 mRNA expression. Further exploration into the relevance of NCS1 in breast cancer progression showed that knockout of NCS1 (NCS1 KO) caused decreased cell survival and motility, increased baseline intracellular Ca2+ levels, and decreased inositol 1,4,5-trisphosphate-mediated Ca2+ responses. Protein kinase B (Akt) activity was decreased in NCS1 KO cells, which could be rescued by buffering intracellular Ca2+ . Conversely, Akt activity was increased in cells overexpressing NCS1 (NCS1 OE). We therefore conclude that NCS1 acts as cellular stress response protein up-regulated by stress-induced NFκB signaling and that NCS1 influences cell survival and motility through effects on Ca2+ signaling and Akt pathway activation.


Assuntos
Movimento Celular/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Sensoras de Cálcio Neuronal/genética , Neuropeptídeos/genética , Estresse Fisiológico/genética , Regulação para Cima/genética , Sequência de Bases , Sistemas CRISPR-Cas/genética , Cálcio/metabolismo , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Quelantes/farmacologia , Citosol/metabolismo , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , NF-kappa B/metabolismo , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Estresse Fisiológico/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima/efeitos dos fármacos
20.
Cell Rep ; 30(11): 3821-3836.e13, 2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32187552

RESUMO

The C-terminal variants G1 and G2 of apolipoprotein L1 (APOL1) confer human resistance to the sleeping sickness parasite Trypanosoma rhodesiense, but they also increase the risk of kidney disease. APOL1 and APOL3 are death-promoting proteins that are partially associated with the endoplasmic reticulum and Golgi membranes. We report that in podocytes, either APOL1 C-terminal helix truncation (APOL1Δ) or APOL3 deletion (APOL3KO) induces similar actomyosin reorganization linked to the inhibition of phosphatidylinositol-4-phosphate [PI(4)P] synthesis by the Golgi PI(4)-kinase IIIB (PI4KB). Both APOL1 and APOL3 can form K+ channels, but only APOL3 exhibits Ca2+-dependent binding of high affinity to neuronal calcium sensor-1 (NCS-1), promoting NCS-1-PI4KB interaction and stimulating PI4KB activity. Alteration of the APOL1 C-terminal helix triggers APOL1 unfolding and increased binding to APOL3, affecting APOL3-NCS-1 interaction. Since the podocytes of G1 and G2 patients exhibit an APOL1Δ or APOL3KO-like phenotype, APOL1 C-terminal variants may induce kidney disease by preventing APOL3 from activating PI4KB, with consecutive actomyosin reorganization of podocytes.


Assuntos
Actomiosina/metabolismo , Apolipoproteína L1/química , Apolipoproteína L1/genética , Apolipoproteínas L/metabolismo , Nefropatias/metabolismo , Mutação/genética , Sequência de Aminoácidos , Apolipoproteína L1/urina , Cálcio/metabolismo , Linhagem Celular , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/efeitos dos fármacos , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Nefropatias/urina , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neuropeptídeos/metabolismo , Fenótipo , Fosfatos de Fosfatidilinositol/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Podócitos/efeitos dos fármacos , Podócitos/metabolismo , Podócitos/ultraestrutura , Poli I-C/farmacologia , Canais de Potássio/metabolismo , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...